Michigan's 21st Century Energy Plan

Thinking About Policies for Meeting Tomorrow's Energy Needs

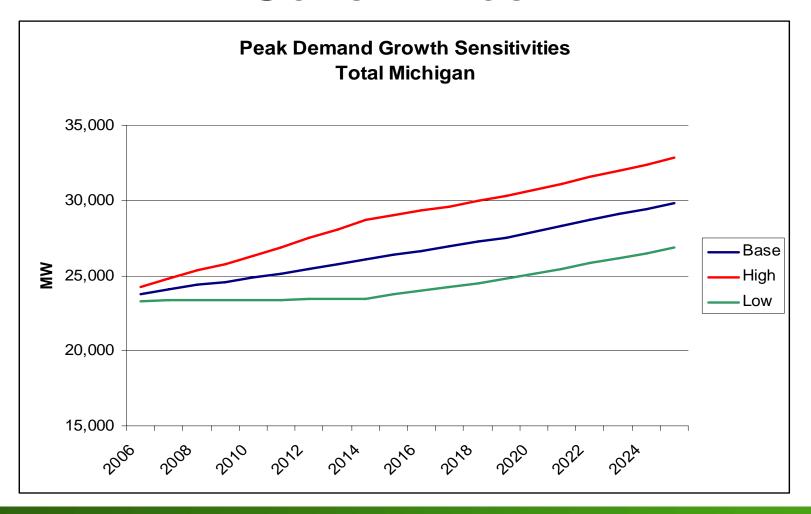
Tom Stanton, Coordinator
Michigan Renewable Energy Program
Michigan Public Service Commission

http://www.michigan.gov/mrep

Executive Directive 2006-2

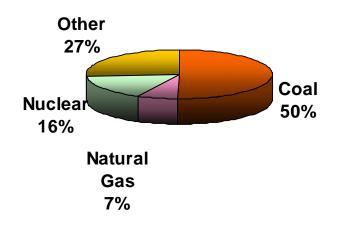
- ... short- and long-term electric needs ... met in... optimum manner that assures a reliable, safe, clean, and affordable supply...
- ... further the state's competitive business climate, grow jobs, and provide affordable rates...
- ... appropriate use and application of energy efficiency, alternative energy technology, and renewable energy technologies...
- ... natural resources and the environment... protected from pollution, physical or visual impairment, or destruction, and future risks associated with fossil fuels...
- ... renewable portfolio standard shall be created that establishes targets for the share of this state's energy consumption derived from renewable energy...
- ... New technology options to generate, transmit, or distribute energy more cleanly or more efficiently shall be identified...
- ... The plan shall identify any legislative or regulatory changes necessary to its implementation, together with any financial, funding, or incentive mechanisms needed...

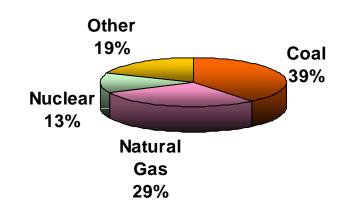
See: http://www.michigan.gov/gov/0,1607,7-168-36898-140415--,00.html


21st Century Energy Plan Process

- April December, 2006, w/~350 interested parties
- Develop a plan to meet Michigan's shortand long-term electric energy needs
- Develop a robust set of policy recommendations designed to address Michigan's electric energy resource needs

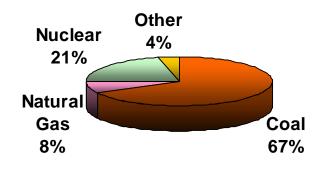
Process of Assessing Adequacy

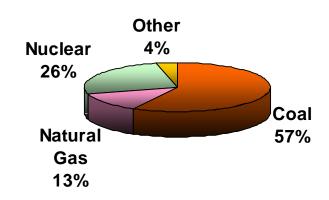

- Forecast of energy and demand growth over short-, intermediate-, and long-term future
- Inventory of current assets (generation and transmission)
- Assessment of adequacy of current assets
- If needed, determination of best resources to acquire


Peak Demand Forecast Sensitivities

Michigan Electric Generation Capacity by Fuel Source

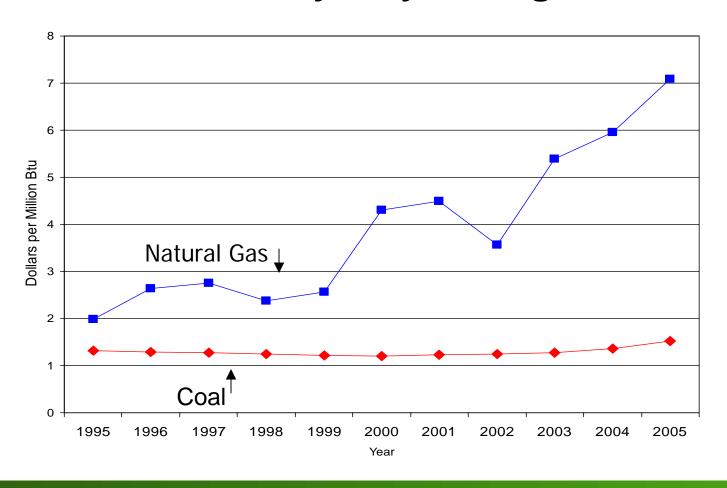
1990


Gas up 22%, Coal down 11%


Source DOE EiA

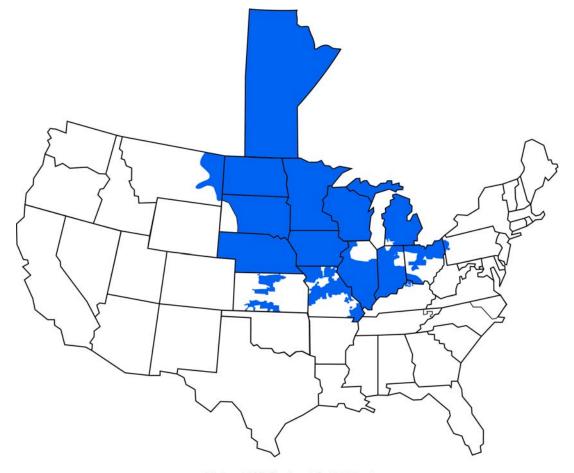
Michigan Electric Generation Energy by Fuel Source

1990 2004



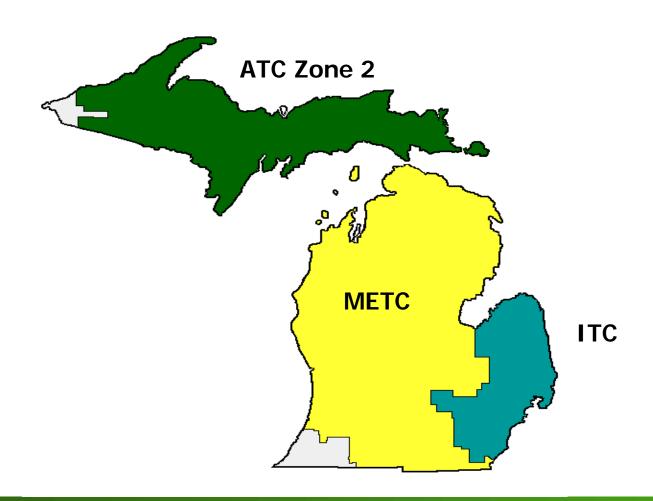
Gas and Nuclear up 5%, Coal down 10%

Source DOE EiA



Cost of Fossil-Fuels Receipts at Electric Generating Plants 1995-2005 yearly averages

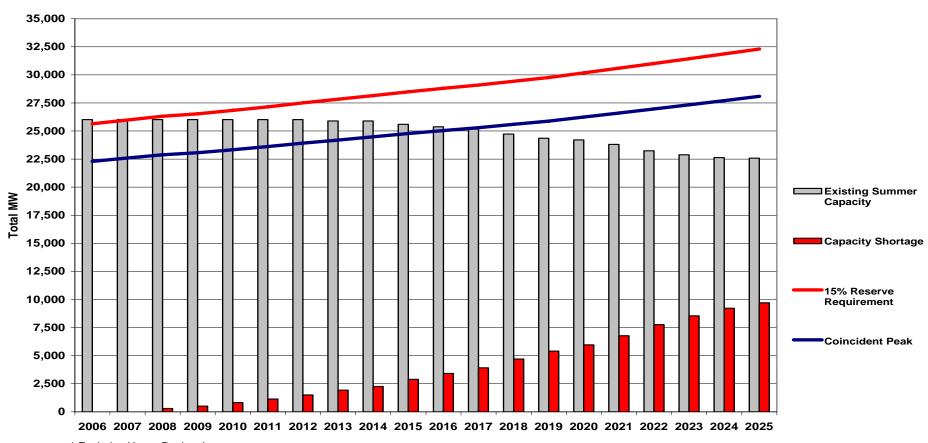
Michigan's Transmission Region



Midwest ISO Regional Reliability Area

Source: http://www.midwestiso.org/page/About%20Us

Electric Transmission Company Michigan Regions


Transmission Capability Into Michigan

- Lower Peninsula
 - -3,000 MW 2009 on-peak
 - 1,500 MW 2009 on-peak with parallel flows
- Upper Peninsula
 - -2005 224 MW
 - -2006 300 MW
 - -2007 300 MW
 - -2008 325 MW
 - -2009 525 MW

Overview of Michigan 20-Year Generating Resource Needs

MECS Resource Gap Analysis
Summer Peak Load and Resource Balance of Existing System

Central Station Technology Options

•	Technology	Size	\$/kW	FOM	VOM	Heat Rate
				(\$/kW)	(\$/MWh)	
•	Sub-critical PC	500	1,478	44.26	1.86	9,496
•	Super-critical PC	500	1,551	44.91	1.75	8,864
•	CFB	300	1,628	46.11	4.37	9,996
•	IGCC	500	1,785	61.30	.98	9,000
•	IGCC-PRB	500	1,999	61.30	.98	10,080
•	Nuclear	1,000	2,352	70.04	.55	10,400
•	Combined Cycle	500	529	5.57	2.19	7,200
•	Combustion Turbine	160	425	2.19	3.83	10,450

Renewable Energy Options

Renewable Energy System Type	Portfolio Contribution In 2016 (MW)	Cost (\$/kWh)		
Wind	525	0.072		
LFG	131	0.074 (New) 0.070 (Existing)		
Anaerobic Digestion	82	0.082		
Cellulosic Biomass	385	0.069		
Total	1,123			

Energy Efficiency Programming

- High penetration (more aggressive/successful) energy efficiency program
 - -2015 = 7,436 GWh, 1,065 MW
 - -2025 = 14,383 GWh, 2,037 MW
- Low penetration (less aggressive/successful) energy efficiency program
 - $-2015 = 4{,}331 \text{ GWh}, 583 \text{ MW}$
 - -2025 = 8,280 GWh, 1,156 MW
- Active load Management = 569 MW
- Commercial Building Code = 195 MW

New Transmission Options

- TIER I Transmission upgrades into Lower Peninsula
 - -1,000 MW
 - -\$100 Million
- TIER II Transmission upgrades into Lower Peninsula
 - -2,000 to 2,500 MW
 - -\$800 Million (DC)

Planning Contingencies

- Fuel cost volatility
- Clean Air Act
- Transmission capability
- Demand growth

Planning Scenarios

- Traditional Generation
- Emissions
- Energy efficiency
- Renewable energy
- Combined energy efficiency and renewable energy
- Combustion turbines only

Sensitivities

- High demand growth
- Low demand growth
- Expanded transmission capability
- Low energy efficiency penetration

Central Station Base Case Results

- 2006 to 2015
- Capacity Additions

CT 1,440 mw
 CC 0 mw
 PC 2,000 mw
 Nuclear 0 mw

Renewable 0 mw

Conservation 0 mw

• Total 3,440 mw

Demand Growth 1.17 %

Reserve Margin 15.26 %

Plan Costs

NPV Utility Cost \$ 32,073.0 M
 NPV Emissions \$ 3,385.6 M
 NPV CO2 \$ 0.00 M

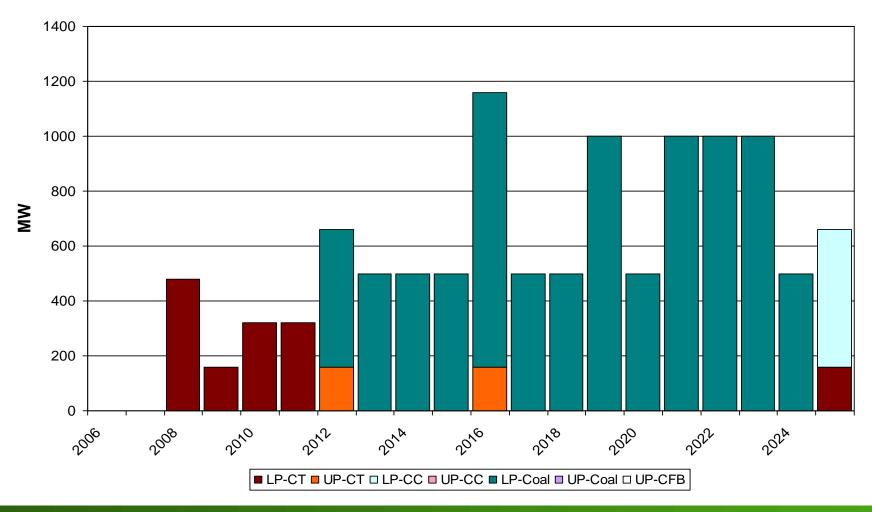
2006 to 2025

Capacity Additions

CT 1,760 mw
 CC 500 mw
 PC 9,000 mw
 Nuclear 0 mw
 Renewable 0 mw
 Conservation 0 mw

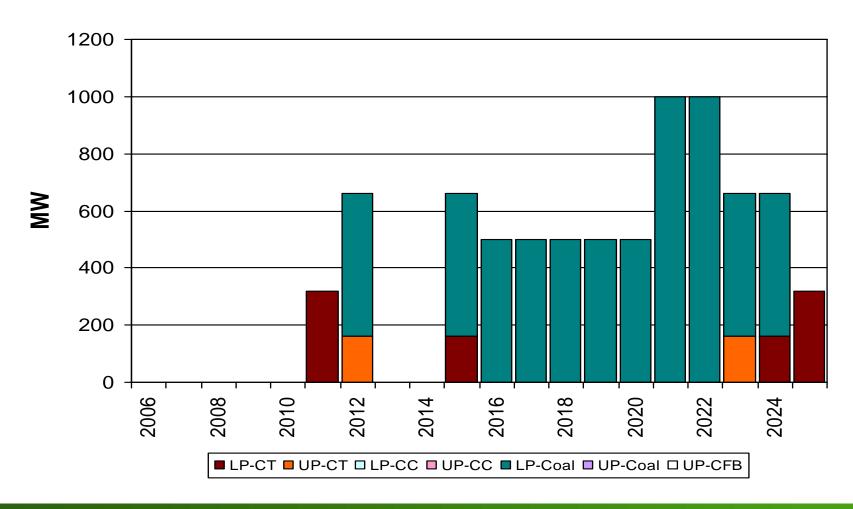
11,260 mw

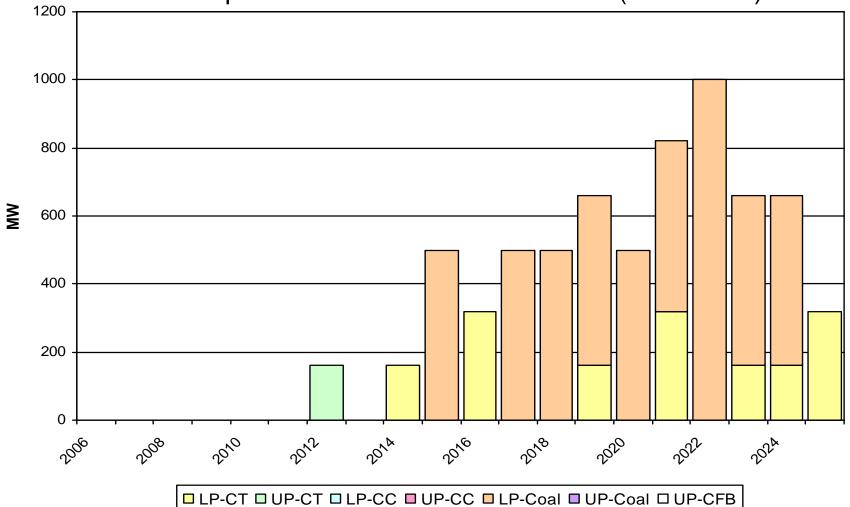
Demand Growth 1.21 %Reserve Margin 15.52 %


Plan Costs

Total

NPV Utility Cost \$ 56,716.9 M
 NPV Emissions \$ 5,602.8 M
 NPV CO2 \$ 0.00 M

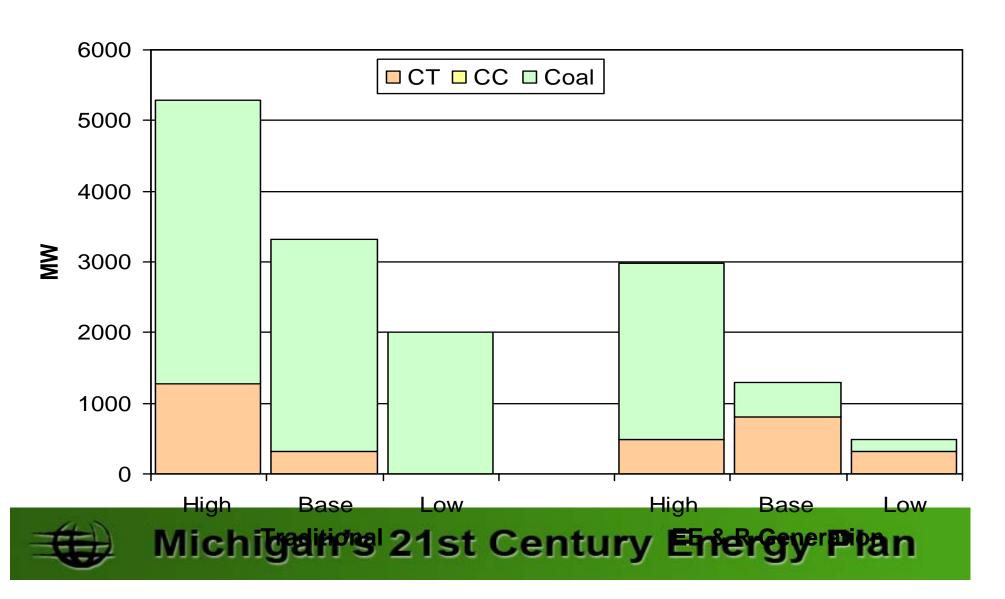

Lower Peninsula (METC/ITC) and Upper Peninsula (ATC-Z2) Central Station Base MW Expansion Plan Schedule 2006-2025


Michigan's 21st Century Energy Plan

Lower Peninsula (METC/ITC) and Upper Peninsula (ATC-Z2) Energy Efficiency Base MW Expansion Plan Schedule 2006-2025

Lower Peninsula (METC/ITC) and Upper Peninsula (ATC-Z2) **Energy Efficiency & Renewable Generation** Base MW Expansion Plan Schedule Scenario (2006-2025)

Michigan's 21st Century Energy Plan


Twenty Year Planning Results

Plan Name	Total Capacity Added mW	CT Capacity mW	CC Capacity mW	PC Capacity mW	Nuclear Capacity mW	Renew- able Capacity mW	Energy Efficiency mW	Ending Reserve Margin %	Ending Peak Demand mW	PVRR \$M
Central Station	11,260	1,760	500	9,000	0	0	0	15.52%	29,856	\$56,716.9
CS High Load	15,040	3,040	2,000	10,000	0	0	0	15.63%	32,841	\$64,116.8
CS Low Load	7,640	640	500	6,500	0	0	0	15.95%	26,870	\$49,811.6
CS Reduce Import	11,220	2,720	1,000	7,500	0	0	0	15.40%	29,856	\$57,004.8
CS Expanded Trans	10,300	800	1,000	8,500	0	0	0	12.56%	29,856	\$57,085.5
Emissions	10,760	1,760	1,000	2,000	6,000	0	0	16.04%	29,856	\$70,752.2
Emissions High Load	14,240	2,240	2,000	4,000	6,000	0	0	15.26%	32,841	\$79,492.7
Emissions Low Load	7,480	480	0	1,000	6,000	0	0	17.69%	26,870	\$62,254.7
Emissions Renew & EE	10,079	480	500	500	5,000	798	2,801	16.89%	26,404	\$66,179.2
Emissions EE Only	11,261	960	0	1,500	5,000	0	2,801	16.53%	26,404	\$66,707.5
Renewable Generation	11,218	1,920	500	8,000	0	798	0	16.28%	29,856	\$58,081.4
Renewable High Load	14,698	2,400	2,000	9,500	0	798	0	15.48%	32,841	\$65,343.3
Renewable Low Load	7,238	1,440	0	5,000	0	798	0	15.55%	26,870	\$51,382.5
Energy Efficiency	10,581	1,280	0	6,500	0	0	2,801	15.73%	26,404	\$53,794.5
EE High Load	14,241	1,440	2,000	8,000	0	0	2,801	15.45%	29,320	\$61,040.0
EE Low Load	6,781	480	0	3,500	0	0	2,801	15.53%	23,488	\$47,384.1
EE Reduce Pen	10,700	1,280	0	7.500	0	0	1,920	15.36%	27,269	\$55,765.2
EE & Renew	10,359	1,760	0	5,000	0	798	2,801	15.95%	26,404	\$55,207.9
EE&R High Load	13,899	800	2,000	7,500	0	798	2,801	15.28%	29,320	\$62,365.1
EE&R Low Load	6,579	480	0	2,500	0	798	2,801	15.86%	23,488	\$48,992.6
EE&R Reduce Penetration	10,518	800	500	6,500	0	798	1,920	15.70%	27,269	\$57,130.8
CTs Only	11,200	11,200	0	0	0	0	0	15.34%	29,856	\$58,987.6
CTs Only High Load	14,880	14,880	0	0	0	0	0	15.18%	32,841	\$68,096.6
CTs Only Low Load	7,680	7,680	0	0	0	0	0	16.09%	26,870	\$50,737.5

METC: High-Base-Low

Traditional vs Energy Efficiency & Renewable Generation Load Growth Scenario over 20 years: 2006-2025

Planning Results

- Reliability concerns continue to exist for Southeast Michigan in the 2009-2010 period
- Energy efficiency and renewable energy options can lower future power costs and offset costs that may arise from greenhouse gas controls
- Energy efficiency and renewable energy options can eliminate or defer the need for additional natural gas fueled generating units
- Numerous scenarios and sensitivities choose additional base load generation when the schedule permits construction
- Further study is needed on a major transmission expansion

Alternative Technologies

- Stirling engines
- Fuel cells
- Solar applications
- Advanced energy storage
- Micro turbines
- Intelligent metering
- "Smart Grid" technologies

Policy Initiatives

- Central Station
- Renewable Energy options
- Energy Efficiency
 - Efficiency measures
 - Load management
- Distributed generation

Policy Issues

- Michigan's hybrid electric market makes it difficult for anyone to build a new power plant
- Additional legislation is needed for energy efficiency and renewable energy options to play a role in Michigan's future
- The Michigan Public Service Commission's policies need continual review to assure they do not undermine new energy technologies

http://www.dleg.state.mi.us/mpsc/electric/capacity/energyplan/index.htm

Michigan's 21st Century Energy Plan